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The investigation of drag-characteristic behavior of the wing in
steady flow is omitted entirely from this paper, because it is not g
difficult matter for a designer to calculate the drag characteristics
with the information contained in this Paper and available solutions
of the steady case.

The present investigation was conducted at the Johns Hopkins
University under the sponsorship and with the financial assistance of
the National Advisory Committee for Aeronautics. The author would like
to express his appreciation to Misses Vivian O'Brien and Patricia
Clarken for their assistance in carrying out the project. '

TRANSIENT REACTION OF AN AIRFOIL DUE TO UNIT-STEP CHANGE

OF FLAPPING AND VERTICAL GUST

As shown in references 1 and 6, the linearized partial differential
equation of the irrotational flow of a compressible nonviscous fluid is

2
o * By = (s + v ) ¢ (1)

where @ is the disturbance potential of the flow, the x-axis is
positive in the opposite direction of the flight, and the y-axis is
positive in the upward direction. The origin is attached to the air-
foil leading edge. The details of the notations are given in

appendix A. In the supersonic case, the disturbance potential of such
an airfoil is equivalent to that due to a source sheet at the y =0
Plane with time-dependent strength and is

g1 T2 T
¢(x,y,t) = _% —_il—/gf V(§:+O;t ) ar dt (2)
(M2 - l) 0 T1 V(T - Tl)(T2 - T)

where v(§,+O,t - T) 1is the vertical velocity component on the wing
surface at the point (§,+0) at an earlier time t - T. The term

v(E,+0,t - T)
(M2 ) l)1/2

addition,

is just the source-sheet strength per unit area. In
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T = E&f_:_él_ _r ]
a2 o) e
, (3)
. M(x - &) r
a(M - 1) @ ]
where
-

ro= J(x 02 - (R - 1)y - )P
1 .

£ = x - y\’M2 -1 . (%)

(¢1 > 0) ]

If the point of interest is on the lower side of the wing surface
(x,-0,t) equation (2) reduces to

* 2 v(e,-0,8 - 1)
#(x,-0,t) = i_____l____f f ML, dr ¢ (5)
7 (Mg _ l)1/2 o Jm1 \’(T - Tl) (T2 - T)

With the above equation the transient case due to sudden change of
angle of attack of the airfoil about any arbitrary point has been treated
in reference 1. The important results of that paper are given in table 1
for use in the present development. Two additional interesting cases
will be treated as follows.

Vertical Flapping

At time t,, the airfoil suddenly descends with constant velocity 1.
The unit-step downwash at any point on the wing can be expressed in terms
of Dirichlet's integral as

v(x,-0,t) = h(t) = & %(-V[; sin © (Z - %0) A + % (6)
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is the angular velocity per second or a frequency parameter. -

where
h(t) (t). Substituting equation (6) into equa-

Figure 1(a) shows

tion (5), there results, after manipulation,

¢(X)"O)t)=‘ f f f sin © t_T_to)dLL)+
8 2(M2 1/2 0 wV'T - Tl)(T2 - T)

X TE
at art

o Ty V(% - Tl)(T2 - T)

_ x [
- h N -
= “(\{2 - l) 7 £ at j; o sino{t - tg M)»)Jo(cn)»)

i | (7)

o(v2 - 1)1/2

oA

or after integration the potential is expressed in three zones according

X =Y as follows:

to the value of —u—
Ut - to)

A

1 .o=1 T M-1
—=—isin™ M(1 - - = <
Mv[ | (1 -v) 2] ( N =Y M

3|

¢h(XJ'O)t) ==

T P

-
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4
— x' x!' = _}E
(t" - to") C
tU
1 = e
t c
o = 200
0 C
and Jo(w).) is the Bessel function of the first kind of the zero order.
: fn Cpn CLh
Table 2 gives the detailed characteristics of —, —=— =1}, —— =Fp,
o CGh ah
CMh . . .
and — = Gh as functions of time, Figures 2 to 4 show these charac-
Ch
teristics. The detailed methods of calculation are gquite similar to
those given in reference 1, and are omitted in this paper.
In figures 2 to 4, a few important features may be explained. Within
t' -ty C
the zone III {0 S 0 < M s Ty = “ph is inversely proportional 4
x! M+ 1 &h
+0 Mach number and independent of time and the location of x'. But in .
R M <t"to' Cgh o .
time zone I = y Ty == is inversely proportional to
M-1 x! G.h
&g - 1 which corresponds to the steady case of Ackeret's result. 1In
M t' - o' M Cph |
zone II s < y = varies not with x' or t' - tg'
M+ 1 x! M-1 Oh ,
r tO'
alone, but with the conical coordinate ————. It is a complicated
X
' -ty e
function of M and ————=., Thus the present solution is similar to
b4
C
Busemann's conical flow. So is the behavior of Fp = — against t' - tg5'. 4

Ay
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Cvn . i i .
As far as Gy = =2 is concerned, it varies both with 1/M  and t' - to'
o
h
in zone I. 1In general, fy, Fy, and Gn increase with decreasing Mach
t! -ty t '
number, if ———— or t' - tg' is kept constant.
X

Vertical Gust

At time +t, if the airfoil begins to encounter a uniform vertical
gust of velocity g, such unit-step downwash g at any point on the
airfoil can also be expressed in terms of Dirichlet's integral

® sin a)(t - tg - %)

. -11 1
v(x,-0,t) = g(t) = & p o dw + 5 (9)
0
Figure 1(b) shows gét) = ag(t) as a function of both t and x.

Substituting equation (9) into equation (5), the disturbance
potential ¢g due to vertical gust can be written as

- . . §
B (x,-0,t) =- € fx d&fﬂrg de Slnw(t"T"tO“ﬁ)dw_
g 22 - 1)1/2 0 0 0 a>d(7 - Tl)(T2 - 7)

T
X at dr
2 T
0 1 (7 - m) (2 - T)
- X ®
—g dw .- ¢ '
= dt = Sin w(t -ty - i MA)JO(wX) -
n(M2 - 1)1/2 0 0
xg
(10)
2(M2 - 1)1/2
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or, after integration, ¢g has to be alsc expressed in three zones,

1 =1 M-1 M+ 1
(M? - l)l/g[é + sin (— - M;] ( v <y < " )
X, . . S <, <sM-1
B (x,-0,1) = <(M2 —1)1/2 (O—V v > (11)
0 (M;l§v>
L

It is interesting to note that ¢h and ¢g are similar in form. The
Fourier integral method of Bessel functions used will take care of the
three zones automatically without considering each zone individually.
This is one of the main advantages of the present method. )

- C
Table 3 shows the detailed characteristics of :§, :E§ = fg,
: o a

g g

CLg CMg . . .

—= =F,, and ——= = Gg as functions of time. Figures 5 to T show

“g “g

Tg» Fg, and Gg as functions of time. The detailed calculations are

also omitted.

Pitching

For convenience, the essential results of reference 1 for the
pitching case are given in table 1. Figures 8 to 10 show some charac-
teristics of this case.

In the case where X' = O or the airfoil rotates about the leading
.‘ . de
edge at a constant rate (al - “O) starting at t' - tg', fg' =
. 7~ .
~ x' (& = d)
tt - to!
varies linearly with ———F— but inversely with M in zone III
% .

t! -ty
(? < ' 0 < M ) if the angle of attack is small at any instant.
X
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M t! - tol tl - tol .

In zone I < it also varies linearly with —————, but
M -1 x! x!
C .
inversely with M2 - 1. If M> 1.5, ———7—£ELT—— also varies approxi-
X'(ccl - G.o)
tt -ty
mately linearly with ————— and is continuocus. in value with zones I
x! '

and IIT although the exact expression as shown in table 1 is quite com-
plicated. Of course, as the Mach number is near to 1, this linear
approximation becomes worse. It seems better to use the exact solution

. C .
in the table. Similar statements can be made about F& = —;—-5%;_
(“1 - “0)
C -
and G('I, = —.-..."—Niq';‘?—.
(“1 - c’“o)

If xg' # 0 some additional contributions have to be considered as

C..-
Q&
fo = e = Ty - Af (12)
x' (& - &)
Cr -
Fy = e = Fy' - OFy (13)
(81 - do)
Gy = T—C-ME_—— = Gg' - AGy' (1k)
(31 - &)
Afst AF.! AG&"
where < = fhs x - Fy, and = G, are given in table 2 and
Xg' Xp' xo' .

figures 2 to L4,
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REACTION ON AN AIRFOIL DUE TO MOTION OF AN ARBITRARY

TIME-DEPENDENT FUNCTION

In reference 1 it has been pointed out that, if the solution of a
linear, ordinary or partial, differential equation with a simple boundary
condition is known and if the given boundary condition can be obtained
by superposition of the simple boundary condition, the general solution
of the same differential equation can then be obtained by superimposing
the elementary solution corresponding to the simple boundary. In the
case of the initial-value problem, the statement is also true. With the
transient problem, the important relation of superposition is the con-
volution integral. This integral relation is associated with many names
in modern mathematical physics. In the transient problem of heat transfer;
it is called Duhamel's integral in honor of the French mathematician
Duhamel (reference 7, pp. 403-404). 1In England it is commonly known as
Borel's theorem (reference 8, pp. 321-328). 1In this country it is
commonly known as Carson's integral, particularly in electrical trans-
mission. In Germany it is usually called the Faltung theorem (refer-
ence 9, pp. 159-167), and this was known to Tricomi. The concept of the
convolution integral plays a very important part in applied mathematics.

In aerodynamics, Jones applied this integral to the problem of air-
plane dynamics in incompressible flow (reference 10). The results may
be considered natural in his problem of ordinary differential equations.
Garrick (reference 11) applied this integral to find the relation of the
Wagner Function to the Theodorsen function in the case of two-dimensional
incompressible nonstationary flow.

In reference 1, the present author constructed an integral relation
entirely from the physical concept because in this problem of supersonic
transient flow the kernel function is discontinuous in the first deriva-
tive at a certain instant of time. The ordinary concept of the convolu-
tion integral cannot be applied without detailed examination, although
the result can be rewritten in quite a similar form to the ordinary
convolution integral. For example, the pressure coefficient Cp(t‘,x'),

the 1ift coefficient Cr(t'), and the moment coefficient Cy(t') for

h(t g(t
any arbitrary a(t) = —i—l or &(t)
U U

convolution integral of the kernel functiorn due to unit-step change in
angle of attack as follows:

can be obtained by means of the
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N r 7 (™
(t',x") £i(t',x") £t -1 ,x")

E

-tl
Jor(t!) r = JFi(t') r@l(+o) -ao(-oi] + JF dr'a(t) JF(t" - 1)
0

b

Cmit") G;(t") ) G(t' - 7')
L.

- wd .

(15)

where F, G, and f are kernel functions discontinuous in first
derivatives as shown in the following table.

Condition M < M << M 0S4 < M
Function M-1 M+ 1 M-1 M+ 1
£f(t',x') £1(t',x") f2(t',x‘) f3(t',x')
F(t') Fi(t") Fo(t') F3(t')
G(t') Gy(t") Go(t') G3(t")

The subscript 1 should be equal to 1, 2, or 3 according to the
above range of time in the term of the left-hand side. Owing to the
discontinuity of these functions, the integral on the right must be
broken up into parts according to the range of time for each function.
For example, in the flapping case, the 1lift is:

(a) For M Sty

M- 1
v
- T
cr(t')g = E%h(+o) - ah(-oi]Fl(t') + ap(T)F(E" - T') ar' +
0
v M t!
Bl ey .
dh(T')Fe(t'— T') ar' + ah(T')F3(t'— ') dar
M .M
t"‘MZI E M+1

(16)




(b) For <t s M ,
1 M- 1
1 M
YT
ot )y = [an(+0) - o, (-0)| Fp(t') + ay ()Pt - 7') ar' +
0
.tl
ap(T')F3(t' - 7') ar' ' (17
gr-M |
M+1
(¢) For 0S¢ S T f T
! |
cr(t )11y = E,Lh(+o) - o, (-0)] F5(t') + Gp( Tt )F5(t" - 1) ar'

0
(18

Tables 2 and 3 give the expressions for f's, F's, and G's 1in the
case of flapping and vertical gusts. In the case of pitching, the abov
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)

)

€

relation is the same as equation (15), except that a should be replaced

by & as given in reference 1 except for C, which is replaced by
’p

C
—% in equation (15). Another complication in this pitching case is the
b4

location of the axis of rotation x5', which 1s the ratio of the axis
location from the leading edge divided by the chord. The contribution
due to the nonzero value of Xx5' 1s denoted by Ofy, AOFy, and  AGy

and should be added respectively to fg, Fg, and Gg. As expected,

Ofe AFe NG, . .

o = fy, —F =TFp, and — G, as shown in figures 2, 3, and L
0]

respectively.

As an application of the above convolution integrals, the cases of
the harmonically oscillating airfoil starting abruptly from rest at t
have been investigated as follows:

0

-
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Pitching oscillation about the leading edge (Xo' = 0).- In the case

of pitching oscillation about the leading edge,

aft') =& for t' <0
(19)
a(t') = qeldt - geit' for t' >0
where gi is the frequency of oscillation, B = %?, and t' = %g. (See
b1

table 4.) Actually, equation (19) is a complex quantity, and the real
part is

for t' <O

i
al

Real oft')
(20)
cos Bt for t' >0

|
fof

Real af(t') =

The expression a(t') =& for t' <O is necessary in order that
a(t') be finite at t' = O, because only finite a&(t') is allowed for
pitching. (For details see reference 1.) The imaginary part is

for t' <0

I
O

Imaginary aft')
(21)

Imaginary a(t') = @ sin Bt' for t' >0

With the complex af(t'), the analysis is more convenient than with
the real or the imaginary part alone. If the axis of rotation is not
at the leading edge Xg' # 0, the additional effect can be obtained from

the flapping case.

Flapping oscillation.- In the case of flapping oscillation,

]
o

a (t) for t <0
(22)

ap(t) = % = Type for t >0



14 : NACA TN 2333

The solution is given in table 5 for the three time zones. Some of the
integrals are given in appendix B.

Harmonically oscillating gust.- In the case of a harmonically .
oscillating gust,

Il
O
ot
A
O

ag(t)

&ge iwt t >0

il

a,(t)

gl

The solution is given in table 6. Some of the integrals are given
in appendix B. All three cases are essential to the supersonic flutter.
The present analysis gives the aerodynamic behavior of the airfoil for
the whole time history, if the harmonic oscillation in flapping and

pitching start abruptly at t+ = 0. If t' > VT the present work

should check with reference 6 exactly. Appendix C shows the comparison.

To show the present analysis graphically, C;y, and Cy have been

calculated with M = 1.5 and B = n/2 for the three oscillations.
Figures 11 and 12 show the CL and CM of the pitching oscillation.

Figures 13 and 14 show them for flapping and figures 15 and 16 show them
for vertical gust. The corresponding values of a(t') are also shown
for comparison of phase shifts, The maximum C;, and CM are larger

in the transient beginning than the steady case which is represented by
M

M-1
It is interesting to note that the extremes (maximum or minimum) of Cj
or Cy always lead the corresponding extremes of «. But in the case

of flapping oscillation and oscillating gust, the extremes of C, or Oy

always lag behind the corresponding extremes of a. As the supersonic
Mach number nears 1, the transient effect becomes more pronounced and

lasts longer.

dotted curves. The transient effect dies out completely when t' >

In the time zone III (? S¢S = f 1), the expressions for Cp(t')

and Cy(t') are very simple in all three cases of harmonic oscillation
for pitching, flapping, and vertical gust. (Refer to tables 4, 5, and 6.)

In the time zone II M _ <4 g

M+ 1 M -1
complicated and cannot be represented in a closed form. Three new
functions or integrals have to be defined. Let

s the expressions are rather
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7
1 i
Jo(g,el) == ae exp(;? cos 9) (24)
61
2
where m = £_M;l’ Bp>0, M>1, O =<91 -fn, and 6] 1is usually a

function of time t'. As designated by Garrick and Rubinow, Jo(g,el)

may be called the incomplete Bessel function of the zero order. It is
complex except when 6; = 0. At 67 = O, equation (24) reduces to the

ordinary Bessel function of the zero order Jo(g) which is real. Simi-
larly, the incomplete Bessel function of the first order can be defined
as :

70

Jl(g,el) = - d6 cos 6 exp(%? cos 6) (25)
61

af e

which is also complex, but reduces to J E the ordinary Bessel
) “1\m /)’

function of the first order when 61 = 0. The new integral is now
defined as '

T

1 -1gM )
C(B,M; 67) = = d6 exp| ——— 26
(p 5 01) = L o (26)
61
When 64 = 0, it reduces to
34
1 -1gM )
c(B,M) = = ae —r 2
(8,M) ,,J; exp 12 (27)

For convenience, C(B,M) is called the C-function and C(B,M; 61)

is called the incomplete C-function. The incomplete C-function occurs
in time zone II for all three cases. In time zone III, it reduces to
C(B,M). This function, to the author's knowledge, has never been
explored before and is investigated in appendix D. In time zone 111,
cr(t') and Cy(t') can be expressed with the known functions
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except C(B,M) in all the three cases. It is expected that C(B,M)
is as important to supersonic flutter as the Theodorsen function is to

flutter in incompressible flow.
TRANSIENT AERODYNAMIC BEHAVIOR OF THE CONTROL SURFACE

Since the principle of superposition holds for the two-dimensional
linear problem if the deflection angle © of the control surface is
measured from the main wing, the control surface itself may be considered
as an independent airfoil at the corresponding deflection angle & and
with its chord Cg. Under such a consideration, the 1ift and moment of
the control surface itself in nonstationary motion can be obtained
directly from the result of the airfoil in the early section, if the
proper time scale is used. The time required to travel a length Cg

C
is t* = —§, and, if t* 1is used as the time unit, the nondimensional

time 1" = f% = gﬁ is connected with the true time and nondimensional
S
time t' = E = HE in the relation
t C

and

* C :
-%__—_C_S.=kc (28)

where to"t* is the difference in starting time of the control movement

from that of the main wing. Thus for an individual increment in 5 as
the step function at time t;", the 1lift and moment coefficients of the

control surface at later times are

CL(t") - A'ai(tin)Fj ('t" _ tj_")
(j = 1:2;3) (29)
CMxi(t") - Aéi(ti")Gj(t" _ ti")

where Fj and Gj are the same as shown in table 1 except that t' is
replaced by t".
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The 1lift coefficient of the control surface alone is

£ M
C ('b") - A'S (O)F ('t") + M-1 '6‘ t "\F (t" -t ") at." +
L 0] J ( i ) 1 i i
0
M
1"
i ML " ' " n
B (61" Fo(t" - t4") aty" +
n__M
M-1
tll
y S(ti")F3(t" - ti") dti" (30)
17"
t M+1

Then, the increment of the total wing lift coefficient due to the control
surface is

t!

tl
_ - tr -R_C_" . .tl - T! T1
= k. A&O(O)FJ-(—-—) + S5(T )FJ o a -~
0 C C
where
t! ! t! ]
Fl—)=F [ 0SS —st"
J(kc) l(kc) ke
en M g - M
£ ! M~ 1 t M+ 1
Fy k—) = FE(—-> - =< y  (31)
(o4 kC C kC kC
M
"
F_'_)_ (_) e )
J kC 3 kC kC - kC J
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Similarly, the increment of total moment coefficient due to the
control surface can be found.

As an example of the effect of the control surface on the total
1ift, the following calculation is made.

(1) M = 1.5 & = 1000 ft/sec t; = 0.02 sec  (ty' = 5)
c=6ft Cg=27t(k =1/3) x,=0 Xp = b £t
(2) Operation schedule of the main wing:
a=0&=0 ' <0
a=& 0S5t £ty
& =0 t' <t

(3) Operation schedule of the control surface:

8(t') = 8(%') =0 t' <0

» - -t 1

5(t') = 2% o<t < —%—

. £ Dtq!

5(¢') = 0 A <21

3

. - 2t

8(t') = -2& L S S
3

5(t') = 8(t') = 0 B>t

The distribution of &(t') and &(t') against t' and the geometry
of the airfoil and control surface are given in figure 17. The contri-
bution of the control surface to total 1lift, that is, ACy(t'), is.shown

in the lower curve; Ei(t') of the main wing is shown in the dotted
curve which has been given in reference 1. Since the ratio of §(t')

and &(t') is given, this curve can be used for any arbitrary &. In
L&t
1

———t——— 1is used instead of E.
(M? _ l)1/2

this curve Cpg =
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DISCUSSION

For the airfoil in a flow of constant supersonic speed, the tran-
sient effect due to pitching, flapping, or vertical gust will damp out

immediately after the change in angle of attack

in a time period
- a

ceases., Although the result is obtained from the linearized theory, it
is expected to be approximately true for the nonlinear theory if the
angle of attack is reasonably small. After that time period, the 1lift,
wave drag, and moment become the same as given by Ackeret in steady two-
dimensional linearized supersonic flow. The transient effect on 'Cp,

C;, and Cy becomes more pronounced and lasts longer as the supersonic

Mach number approaches 1. The same is also true of the transient period
of the harmonic oscillations in pitching, flapping, or vertical gust
which start from rest at t = O.

Cype Crp
In the case of pitching with constant rate, - — e |
' -~ - * -
X ((Ll - G.o) ((Ll - G'O)
C *
and (T—l@%—s- can be approximated satisfactorily with a straight line
o - @
1 0

in the time zone II, if M > 1.5. When such an approximation is adopted,
the case of pitching harmonic oscillation can be evaluated very quickly.
It is also easy to evaluate any arbitrary motion in pitching. In the
present analysis, the exact expressions in table 3 were used instead of
the above approximation because no simple approximation can be obtained
for either flapping or vertical gust.

In solving the transient problems with the convolution integral,
one new function C(B,M) is discovered. For the time from the abrupt

start (t > M c

L}
N o1 E B Cp, CL, and q% in the cases of harmonic oscil-

lations have to be expressed in terms of C(B,M). It seems of comparable
importance to supersonic flutter as the Theodorsen function is to flutter
in incompressible flow. In the transient time zone II, where

ﬁ—rf—T% St £ Eli’[—l- %’ a new function C(B,M; 91), called the incomplete
C-function, occurs which assumes an importance equal to that of the
incomplete Bessel functions. More complete calculation of C(B,M) seems
useful for the analysis of -supersonic flutter in order to cover wider
ranges of Mach number and frequency than those given in reference 6.
Appendix D gives some of the properties of C(B,M), C(B,M; 91), and

the incomplete Bessel functions.
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20
: Cpd C
The pressure coefficients ———7—22—7—— in pitching, :EE in
x'(al - “O) ap
c
flapping, and :£§ in vertical gust are functions of Mach number and

Gag -t' :

- tA!
a conical parameter - 0

only. They are analogous to the behavior
of Busemann's conical flow. As pointed out in reference 1, these results
can be applied to a yawing infinite wing, if the leading edge is ahead
of the Mach line,

The effects of additional degrees of freedom such as the control
surface or servoflaps can be evaluated with the result of the pitching
and flapping of the main wing as shown under Transient Aerodynamic
Behavior of the Control Surface. With the present basic approach, a
good aeronautical engineer with ingenuity should be able to solve all
two-dimensional problems of flutter and any other arbitrary motion.

Of course in the case of complicated time-dependent functions of angle
of attack some numerical or graphical integration of the convolution
integral might be necessary as shown in references 1 and 10.

For the case of the harmonic oscillation with constant maximum
amplitude with abrupt start at t = 0 the absolute magnitudes of the
extremes in Cj and Cy Tfor pitching and flapping degrees of freedom

are larger in the transient region M Q,g t < M _C than those
M+1U M-1T0 :

g <t, particulafly’as the supersonic Mach

M-17U

number nears 1. In addition, the maximum and minimum of the oscillating
angle of attack are not in phase with the maximum and minimum of Cr,

or Cy. In the case of pitching, the load leads the angle of attack;

in the case of flapping, the angle of attack leads the load. Also, the
angle of attack leads the load in the case of vertical gust.

in the steady region

As an interesting example of the harmonic oscillation building up
to flutter or damping out, the case with complex ® should be inves-
tigated. With the convolution integral, it seems within the reach of
the present analysis. Of course, the imaginary part of w must be
determined from the interaction of aerodynamic forces and the elastic

behavior of the wing.

The Johns Hopkins University
Baltimore, Md., November 4, 1949
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y APPENDIX A
) SYMBOLS

a velocity of sound

c wing chord

Cy, transient 1ift coefficient

C1o two-dimensional 1ift coefficient in steady case

. Cyu transient moment coefficient about axis of rotation
Cp pressure coefficient (2(p - Iﬂ)/plulé)
Cg chord of control surface

Q
—~
w
-

=
~—

1l

7 s T .
_1. d8 exp -1iB = ..J; a6 exp -—_;1_21\4___
b cos 6 n M - cos @6
0 1- 0
M .
A n .
= 1 -ico
Clo,M = ae e
(o,4) nj; xP(M—cosG)

‘ 7t
. 9
o(p,M; 07) = 1 6 exp (———BM__)
6
1

M - cos 8
F( ) kernel function concerning 1ift coefficient
£( ) kernel function concerning pressure coefficient
Gg( ) kernel function concerning moment coefficient
g velocity of vertical gust

a é maximum velocity of uniform vertical gust




descending velocity

maximum velocity of vertical flapping wing

Bessel function of zero order

Bessel function of first order

el

Mach number

2
parameter of Mach number (gfif——)

time
nondimensional time (t/%)

nondimensional time (control surface) (t/t*)
free-stream velocity

y-component of velocity

axis along chord direction

percent of chord. (x/C)

axis of rotation of entire airfoil

vertical axis

angle of attack

constant angle of attack

NACA TN 2333
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>
I

Q
I

BM

w

Subscripts:

g
h

Qt

»

frequency parameter for oscillating airfoils
deflection angle of control sufface

source location along y-axis

running variable

lower limit of 6

x/aéwg - l)

x/U(t - tg)= x' /(' - 1)

source location along x-axis

time interval
nondimensional time interval (7/%)
velocity potential

frequency parameter (angular velocity per second)

vertical gust
flapping
pitching (changing angle of attack)

control surface
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APPENDIX B

SUMMARY OF INTEGRALS

Important Integrals in the Case of Steady Harmonic Oscillation

The following integrals are used in evaluating C; and Cy for the

time zone t' EM M 0 (as shown in tables %, 5, and 6).

g L
M+1 .
ipr' 2 1 e . 1B(t'- M
Ilf ethT {1 * = sin [m(t -T') - M]} art = % e M-T ——— JO(I%)
£ -

M
£ - . M
M+l 4pr? - - —
I, * o1PT (t* - 7') 41 + 2 sin 1 I:m(t‘ -T') - M] ar' = 2 elﬁ( M'l)(iB—M— + 1) +
o1 x (18)2 M-l

M

M-1

' M s
TR . ( ~_)
1, eiBT! V(t' o2 CM2(r - - 1)2 art = Mxi elB t' -5 Jl(g)
£ ’r% ipM2 - 1
_MI M
Tt - M+ o M
1, ST (e~ ) (e - )2 SRt -t - 1)2 g = Mk iﬁ(t m)[;{ ro(g) +
oM ip\M2 - 1
M-1
M 2i
(m - _B-)Jl(g)]
. M o oM 2
M .
15 et eiBT' <:os‘l M }"_'_'_T_'__'i art = i&'_ ne—l M+1 _ e_i(M - COoS 9) ao
g M g 1P o
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»
t'-ﬁM—l ) (e 1 M
I LI (4 Lrr) ol o =L g eV M TRT
" £ - i M+ 1
e - M
M-1

M
1 - e
T _ igt? M
It B e R B-RAT STl B W b
i -1 i M+ 1

M
M+1 3 M
1 - - i t' -
g N G R D e U VO M A SR f ﬂ( " ) e 1Pt -
M th -7 iB M+ 1

. 3e~1fm m
Sy ] 1
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Important Integrals in the Case of Transient
Harmonic Oscillation

The following integrals are used in calculating C; and Cy for

the time zone —M— St' €M (a5 shown in tables k4, 5, and 6).
M+ 1 M-1

M

P -
M+1
I, BT L1 £ 2 gin7) {m(t' - 7') - M art = -2+ .2 cos7l (mt' - M) +
1 f o [( ) ] TR, c ( )
0

of

RNV

ip

eie(t' -1) fﬂ e-iB—c—cﬁ,%ﬁ
c

os=1 (mt'-M)

M
YT ,
I'e'f BT (g~ 7) {1 + % sin [m(s' - 1) - M]} dr' = E_B + ( l)g][i- cos™d (mt' - M)—E] +
TG
o :

iglt'- % X cosﬂS
2e ( )f » <M_+ _.l_+ cos )e-lﬁ—‘—m ag
. niB m ig m
cos=1 (mt' -M)

M

t! - —
Mo
13, e1[3'r \I(t, _ "r')2 _ Me(t‘ R 1)2 ar' = M i_}_ ’l - (mt' - M)2 -
o ‘JMZ T1 18

ol

* _ Bc05¢
cos § e ngg
JMz =118 Ueos™! (mt'-M)
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3
»
g M
M+l 17! > ) ) M -t! 2 2
I, e (¢ —T')\J(t' - T')E S M8 -1 - 1)2 g = e - ‘Jl-(mt'-M) -
M2 - 1 1B (1p)2
o \J -
5t
cafyr . M
M elB(t m) (1+Mcos¢+2cos ¢) -152%-@5- o
= e
i n -
M2 -1 B cos™L fat ' M) n 1B
|__M_ H
W o, i (t._1> . BM
I, (emT') cos Ly B =Tt =1y xR ) edst o5 0 4 -
. 1B ip
0 t T cos™L M b=l
t'
L cos™t M——(t' - 1)
ip £
g - M ( M
S , 1pler -——) ;
1" BT (4~ 11) cosl y -1 -1 gt = M e WL/t -1 M(t" - 1) _
- £ -t iBM+ 1 ip £
: iﬁ(‘t' -ﬁ) . COS
-i
2M £ - THPTE ag + L I'
i i
Mo -1 B cos™1 (mtt-M) B
M 3 ' M
o L o) e |
1 Ml IBT" (g1 | 11)2 cosl M roml o dlge o M e Mel/ .E'_.. cos—1 Me' - 1)
tt - 7! ig M+ 1 iB t!
0]
i
: M
¢ .._) os
Me elB( o -1 cosp 2 .
7 15 (M + cos @e mo g+ T Ig!
2
(w2 - 1)3 cos™ (mt' M)
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&
4
M
Ve — 1 i e 13 (‘b' - l)
' Ml iBT'ei | opr)3 1yt -7m -1 .-1_“31‘3(t M+l)t M
Ig f IBT (¢ —T.) cos - ar _iB<M+l)e 5 cos =
0
. M 7 .
IB't'-ﬁ> s cos @
) M2+1+2Mcos¢+icos¢)elﬁm d¢+
ig : ig
os'l(mt'-M)
1 M2 ‘I_——e 3
— 1 - (mbt' - M)+ = I
iB (¥ - 1)3/2 g T
M
o s e R
19! M+1 eiBT'(t' _ T')2 V(t, _ T')2—M2(t' - gt - 1)2 drt = - M /2 mi mztig +
(M2 ~ 1)5 B
0
(-8 [" .
ipler -
_’!L(M+3mt')+6(-ll)2]- u3 g f {2M+%+COS¢M2+1+:—B-MHI+
iB 1B (M2 _ 1)5/2 iB cosL (mtra) i R
,.cos ¢
m \2 -if—i
6(m)]}e T/
$
oy
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APPENDIX C
CHECK WITH NACA TN 1158

To check the present results through convolution integrals with
Garrick and Rubinow's work, a case of the steady harmonic oscillation
of the angle of attack about the leading edge is investigated. With
their notation, C;, due to the harmonic oscillation of the angle of

attack alone (m = aoei“ﬁ) may be verified from their equation (26) as

c, = hkzei“taO(L3 + 11,,) | (c1)
At x4 =0,
Ly = Ly’ I3 =Ly - 2xgl,
Ly = Ly’ Ly = L' - 2%,

At M =2, for = 1.667, from their table II,

ol [

L3' = 1.50219 th = 0.69968

Hence,

ap(2.16315 + 1.0075k1)eliwt

E‘O
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#
NOTATION
",
NACA TN 1158 Present paper
t gt = WU
. - c
oXC
» = ol
P U
b cC=2b
v U=aM=v
k=4 B =2k
v
10t  exp (ipt') = exp (iwt)

In the present case a = & €Xp (ipt'). From table 4 for t' = v M X

1\

L) g ex iB(t' - 2M2 ) (m) 2, 2l )-% +

a M® -1 q—é_:—z yﬁEJ]Frffi -

B 2 1 . ‘ 5 n
Jl(ﬁ)i ](1 + 1—5) + ip exp (ipt") [ﬁ+ ¥i§ +
M\lMe -1 .

——?—E]EL - C(B:M?:I

M3(1p)

_p and B =1.2, Cp =3 exp (ipt')(2.16315 + 1.007531).

whence, at M
identical, within computationdl limits.

The expressions are
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APPENDIX D

INVESTIGATION OF THE FEW IMPORTANT INTEGRALS RELATED TO
SUPERSONIC FLUTTER AND TRANSIENT PROBLEMS

C-Function

The problem is investigation of the C-function or the integral

-ipM (
Ll:K a6 exp (M - CcOs 6) - (

= o
\VARY4
= O

C( B)M) =

A |-

If the above integral is differentiated with respect to B and M,
o s [ i) 6
Sg - 1B ~ dflexp ( “1PM ) cos > (D1)
M ™ Jo B M - cos GJ(M - cos 6)
- -1pM
oc - de |exp ( 2 ) M (D2)
3B 7 0 B M - cos 6/ |M - cos @
2 _ n . 2
o ¢ = dOlEXP (M L 9)] — (D3)
OB n 0 - cos (M - cos 8)

oC

3

2
=j__a__g+
2

B

> =

451

With the above three relations, it is found that C(B,M) = Cr + iCy
satisfies the differential equation
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If the real and imaginary parts of C(B,M) are taken separately,

BCR B BQCI . M BCR R
OB 382 B oM

s (D5)
3oy _ ey Ry

which are two simultaneous differential equations. The required six
boundary conditions can be obtained from C(B,M) as follows.

For B =0,
-
cr(o,M) =1 cz(0,M) = 0
> (D6)
oCR -0 oCt _ M
oB OB M2 - 1
»
For M - o,
Cr = cos B Cr = -sin B (D7)
10 oM
The integral 1 dé exp (———i:Hi———) can be written as
bl ¢ o M- cos B

7 .
- -1lg
C(U,M) = %f dé exp (m)
0

where o = PM. Under the new definition, the function .E(U,M) can be
shown to satisfy the differential equation

D —

1o 32 oM
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or
2.—- —_—
802 M
o 825]: - - aCR
302 M

J

33

(D9)

It is easy to show that the real and imaginary parts of C(o,M)

must satisfy the equations

2 d2G 525
g a QJ R) = R 0o <& 0
302 \ 362 M2
and f
o [ 3¢ ¢
o 0 2<0 2:[) = 21 1SM<w
3"\ 3=/ m 3
The  corresponding boundary conditions are:
- For o=0, M>1,
_ — n
- CR=1 Ci =0
Cg _ Xy
ao' 30 Mg -1 >
2— —
3-Cg M 92Ty
2 = 3/2 2 = O
do (M2 - l) oc
[
For M —» 0,
—_ _ "‘1
CR=1 Ct =0
oG, aC-
® _R_ 0 1. 0 >
oM oM
* EEB =0 é_l =0
5o So J

(D10)

(p11)

(D12)
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The preceding function is so important to the supersonic flutter
problem that thorough investigation of the function and the other
solutions of the corresponding differential equation seems advisable.
To show the general behavior of this new function, a case with M = 1.3
and O < B < 3 has been calculated numerically. See table 7 and

figure 18.

Incomplete C-function

The incomplete C-function is

7
. _ 1 -ipgM
ces 01) =3 | e (roti) o (13)
1

It can be shown that this incomplete C-function also satisfies the
differential equations (D5) except the. boundary conditions are obtained
from equation (D13).

For B =0,
)
CR‘—‘( ——;l-) CI—O
> (D1L)
¢ aoC )
R _ I___-M _2 -1 i[M+1 o1
BB 0 513 M2_1E tan (M_ltan 2)
»

1 91) .
Cgr = (l - 7?) cos B Cr = —(l - —) sin B (p15)

To shoﬁ the nature of the incomplete C-function, a case with M = 1.5,

B = %, ana O S 61 < 5 has been calculated by means of numerical inte-
gration. See table 8 and figure 19. The above data are used in the tran-
sient behavior as shown in figures 11 to 16.
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Incomplete Bessel Functions

The incomplete Bessel functions are

7t
Jo(z,el) = % exp (+iz cos 6) ag (D16)
61
_
Jl(z,el) = %% cos 8 exp (+iz cos 6) A6 (p17)
61

These two functions become Jy(z) and Jl(z), respectively, when
61 = 0. They have been called the incomplete Bessel functions by

Garrick and Rubinow. The case M = 1.5, B = g, end O S 67 X x has

been calculated by numerical methods. It is interesting that each has

a real and an imaginary part. At 61 = 0, both become real and ordinary
Bessel functions. Both play as important roles as the incomplete
C~function in harmonic oscillations at the transient time zone II. -See
table 8 and figures 20 and 21.
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TABLE 1

CHARACTERISTICS OF AN AIRFOIL WITH CHANGING ANGLE OF ATTACK 5.1

E‘O' - 0 see figs. 8, 9, and 10. For x' #£0 refer to table 2 and figs. 2, 3, and &)
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TABLE b4

CHANGING ANGLE OF ATTACK

t'>0
in the case x5' = 0. See figs. 11 and l2.
[y
Zone T Zone I Zone III
Ly LI SIS o gt
M-17 M+1 M- M+l

- M
wefz . & 2 17 yTwsT ‘ T2 2
1pe’ S 1- e ae | + ipelBt’le . o4, <= | .
IEI HE T 3010)2 n A pe |;4+ MiB o w3(1p)2

"
21p 8 (t'-%) I: oM -1
{42 - )72 ¢ conl meron v Wip
c(tt) pfer- M8 2 _ )
= = fuls)l/_z o8( m)(l . _2:2“3 1); (%) - ) ) :_3(t + o . 11‘5) .
o
]
cos § (— % - M%Eil e—le: = o - m[ﬁ + sta”l (me' - MZI -
et E) s L)oyfE L S
(e - 1)172M( iB) l(m) ) (v - 1)J./e

2 32 ( o 1) -1 (t' - ) b
JRCERN PR s M2 4 =
7 (mt MY o L'+ 2M2 4 m cos™" M{=— + ()@ - 1)1 A

i e
g 2 2 1 "Eu—cncﬁ

1pe o b T b 1-= e - a8 +

LR R I

t.

WM

wei——a(t ﬁ;)f" '}* o3 -2) 2 |- c°m5¢ af
1,

o - Y2 foogt o) © 321 2(18)

o gp M 3 pelBtt| M, 2 2 |
jpeiptr 2 2 My % e TM-coE B gg) 4 M 3(1p)3
S AR TR TINE ” me B cosg T ;MR e

° ipe ag o+

B L e,

Wl
+
w
2
&
¥
N
«
(At
a
2
3
-
o
)
-
B

Cy(t')
1

ziBeia(t'_ f‘);)l; M -2 1 -Iro(E) -
@

e ) z
(v2 - 02 [3° s 12(16)2| TR |- w2 - 1) o7

3R - l)l/2 ’ a2 - 1)3/2 i

1,28, up 2
o T R + +
u3 i (1e)2:|

25ew(t' " "%)[5 1

M- L) rp 2
e el -
wGe - )23 318 3e(1p2| e . . e - 1)M2
( ) . __B(i—_g)___ ...]-_Ev2+2_"_+ M2 4 2:|CC>E']'M(c - )— (- 2)
il - ) Pig| ¥ i (18)2 t

_—?——[5+ sin7l (mt' - Mﬂ 2
<0 - 1)1/e 2 (2 - l)1/2

*C-function C(B,M). ‘ II

**Incompléte C-function C(B,M; 61); see appendix D.
tncomplete Bessel functions; see appendix D.
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NACA TN 2333

TABLE T

VALUES OF C-FUNCTION C(B,M) FOR M = 1.3

B Real Imaginary
0 1.0 0

.3 .84153 -. k17961

5 .62101 -.567971

.8 . 32000 -.569621
1.0 .2184) -.4bo8LL3
1.2 | L191k7 - 48541
1.5 ' | .17883 - k77124
1.7 .12058 -.534231
2.0 -. 48081 -.562791
2.2 -.16005 -.511541
2.k -.22697 - b2ho1d
2.5 -.23982 -.381231
2.93 -.22265 -.293551

*‘Iﬂ!’,”'
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TABLE 8

NACA TN é333

VALUES OF INCOMPLETE C—FUNCTION AND INCOMPLETE BESSEL FUNCTIONS

[@ = n/2, M= 1.;]

61 c(eM; 67) Jo(%,el) Jl(g,el)
0 -0.05339 | -0.471481i | 0.29055 | O 0.58148 | O

.2 -.0k952 -.534931 . 30946 . 060781 .52110 .018801

A -.02526 -.593171 .32378 .12278i . 16198 .032491

.6 .02500 -.630791 .32891 .186141 . ho6hT .037071

.8 .08770 | -.63L931 ;32058 .249101 . 35837 .030881
1.0 L1h43h -.607201 .29582 .307501 . 3220k .015731
1.2 18435 -.558191 .25k417 . 355361 .30020 | -.00289i
1.4 .20575 -. 498481 .19871 . 385801 .29172 | -.015721
1.6 .2108L4 -. 435174 .13598 .394201 2907k -.oel9oi
1.8 .20310 -.372061 L0745 .379001 .288k1 | -.01k091
2.0 .18569 -.310871i .02257 .3h2811 27643 .002481
2.2 16124 | -.252121 | -.01k429 .291251 .25027 .020821
2.4 .13173 | -.19573i | -.03k07 .230961 .21010 .033771
2.6 .09867 -.1k41331i | -.03808 .167561 .15938 .036831
2.8 .06326 -.0884k4i | -.02980 | -.104501 .10248 .029291
3.0 0264 -.036501 | -.01367 .0k2951 .0k279 .013591
3.1 .00778 -.010711i | -.00k08 .012591 .01259 .00k111

T 0 0 0 0 0 0

.
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(b) E%l = ag(b).

Figurc 1.- Angle of attack as a function of time t for two cases: (a) Flapping
wing and (b) wing meeting a vertical gust,
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Figure 7.- Plot of Gg as
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Figure 17.- Distribution of &(t') and &(t') against t' and geometry of
airfoil and control surface. Contribution of control surface to total lift
shown by curve at bottom of figure. Cy(t') shown by dotted curve
(from reference 1). t4' = 5.
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Figure 20.- Incomplete Bessel function of zero order ]O(E. ,61) for
m
M =15 and B = n/2.
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Figure 21.- Incomplete Bessel function of first order Iq (-I%,el) for
' M =15 and B = n/2,

NACA-Langley - 4-4-51 - 1050

Imaginary scale




